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On Dirac fields in a curved space-time 

J B Griffiths 
Department of Mathematics, University of Technology, Loughborough, Leicestershire, 
UK 

Received 18 December 1978 

Abstract. It is shown that spin-f particles with non-zero rest-mass have certain anomalous 
properties in a curved space-time. The sign of their energy density may be observer- 
dependent. In addition, the complete energy-momentum tensor may vanish in some 
space-times. 

1. Introduction 

It is known that the two-component neutrino field has a number of anomalous 
properties when considered in a curved space-time. For example, the sign of its energy 
density is observer-dependent. In fact the sign of the energy density of a neutrino field 
may even change as it moves through space. In addition, as the neutrino propagates, its 
complete energy-momentum tensor may suddenly vanish for a period even though its 
current vector remains non-zero. A non-trivial solution with zero energy-momentum 
tensor is known as a ghost neutrino. 

I have pointed out in recent articles (Griffiths 1977, 1979) that these anomalous 
properties of neutrino fields are inevitable. They are a consequence of the fact that 
quantities describing the local curvature of space-time enter explicitly into the energy- 
momentum tensor. The expression for the neutrino energy-momentum tensor 
contains derivatives of spinor quantities. In a curved space-time ordinary derivatives 
are replaced by covariant derivatives which include terms describing the local curva- 
ture. Now, since curvature terms may be positive or negative and depend on the 
observer, it is not surprising that even the sign of the energy density is observer- 
dependent. Ghost solutions correspond to the particular case in which the curvature 
terms in the energy-momentum tensor actually cancel out the terms involving the 
partial derivatives. 

It has sometimes been argued that the anomalies found in neutrino fields are 
peculiar to two-component neutrinos and that if neutrinos are considered to have 
non-zero mass the anomalies would not occur. In this paper I show that this suggestion 
is incorrect. If we take a four-component Dirac field with non-zero mass, then in a 
curved space-time the anomalies both of energy non-definiteness and of ghost solutions 
still occur. They inevitably arise because curvature terms enter the energy-momentum 
tensor of the Dirac field. 
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2. Field equations 

The Dirac field is usually described by a four-component spinor. However I find it 
convenient here to use two two-component spinors Q A  and d A  as described by Corson 
(1953). Spinor indices, denoted here by capital latin letters, take the values 1 and 2. 

In order to describe the field in a curved space-time, it is necessary first to generalise 
the complex Pauli spin matrices so that they satisfy 

at all points of space-time for which the metric is g’”. It is also necessary to replace 
partial derivatives by covariant derivatives. 

Having made these two generalisations, Dirac’s equation for a spin-; particle can be 
written in the form: 

and the energy-momentum tensor of the field is 

It is now convenient to introduce the notation of Newman and Penrose (1962). We 
introduce two basis spinors o A  and i A ,  normalised such that 

These can be used to define a tetrad of null vectors I,, n,, m,, m, by putting 

The spin coefficients can be defined as the components of the covariant derivatives of 
the basis spinors as follows: 

o A ; , u $ ~  = ~ o A o B o ~  - L Y O A O B L ~  - B O A L B O ~  + C O A L B L ~  

- TLAOBOC -k PLAOBLC -t U L A L B O ~  - KLALBLC 

L A : , U : ~  = U O A O B O ~  - A O A O B L ~  - ~ O A L B O ~  + T O A L B L ~  

- ~ L A o B o ~  + C Y L A O B L ~  + B L A L B o ~  - ELALBLC.. 

We now assume that the two spinors of the Dirac field are not proportional to each 
other. (The exceptional case in which this is not so is treated separately in 9: 5 . )  In this 
general case it is possible to align the two basis spinors with the field spinors. We can put 
Q A  = QoA and 4 A  =4iA where Q and 4 are complex scalars. This choice does not 
define the basis spinors uniquely. We can still make use of the freedom 

L A  j ~ - l  e-iSLA. o A  + R eiSoA. 
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Using the notation of Newman and Penrose (1962), the Dirac equation can now be 
written in the form: 

D$ = ( p  -e )$  +m$ 

a$ = (7 -@)$ 

& = - ( r - a ) 4  
A 4  = -(w - y ) +  - m$. 

The current vector is now 

i, = M, + 4&, 
and the energy-momentum tensor can be written in terms of its tetrad components as 

E,, = AlJ,, + 2Bl(,m,, + 2 ~ 1 ~ , M v ~  + 2Cl(,n,, 

+2Gm(wm,j+Dm,m, +DA,fit, +2En(,m,,+2En(,m,,+Fnwn, 

where 

A =$$$A$- JAJ, + $$(.i; - y ) ]  

B = $[@$ + +@(a - 2 ~ )  + 4&] 
c = ii[$$(p - p )  + 4q7(~ - g) + 2m44 - 2m$& 

G = $[$$(P - P )  + 46G - w)I 
D = $i[ $$6 - &A 3 
E = $ [ & @ + ~ ~ @ ( 2 r - p ) - $ $ t ]  

F = $i[&D4 - 4D6 + 4&(C - E ) ] .  

These components have been simplified as far as possible using the components of the 
Dirac equation. 

3. Energy conditions 

Following Wainwright (1971) we introduce two energy conditions to apply to the field: 

El: A field is said to be of type El if its energy-momentum tensor satisfies 
Elrvuwu“ # 0 for all (unit, future pointing) time-like vectors U” at each event for which 
EILv # 0. 

E2: A field is said to be of type Ez if its energy-momentum tensor is such that E,,,u” 
is a time-like or null vector for all time-like vectors U ”  at each event for which E,, # 0. 

The condition E, is equivalent to the condition that the field should have either positive 
energy density or negative energy density with respect to all observers. The condition 
Ez is the condition that the four-momentum of the field is time-like or null with respect 
to all observers. Both these conditions are eminently reasonable and are usually 
automatically satisfied for any realistic field. However they are not satisfied for a 
neutrino field. It is the purpose of this section to show that they are not automatically 
satisfied for the Dirac field either, even though the field has a non-zero mass parameter. 
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The results are stated here in two theorems which relate to the components of the 
energy-momentum tensor defined in the previous section. 

Theorem 1. The Dirac field is of type El if and only if there exist no real roots of the 
quartic 

a O + a l x  +a2x2+a3x3+a4x 4 

where 
ao=A 

a l  = 2h(B e-if3 + B  eie) 

a 2 = 2 C + 2 h 2 G + h 2 ( D  e-"'+D eZi') 

a3 = 2h(E e-"+E e") 

a 4 = F  

for all values of 8 and for all values of h satisfying 0 S h < 1. 

Proof. Consider the vector 
U, = al, + bn, - c e if3 m, - c e-iem, 

which is a general time-like vector provided ab > cz. Then 

E,,U~U" = b2A +2bc(B e-"+B e i e )+2abC+2c2G 

+c2(D e-2ie+D e2ie)+2ac(E e-" + E  e ie)+a2F.  

The field clearly satisfies condition El if and only if this expression has no real roots for 
a, b and c satisfying ab > cz for any value of 8. Now putting c2  = h2ab where O s  h < 1 
and dividing by bZ, the above expression becomes (on putting xz  = a /b)  

A + 2h(B e - '@+B eif3)x + [2C+2h2G + h2(D e-2i' +d e 2 i 8 ) ] ~ 2  

+ 2 h ( E  e-i + E ei ' )x + Fx 4. 

The freedom in the choice of 8 permits us to consider negative vaIues of x as well as 
positive values and the theorem follows. 

Theorem 2. The Dirac field is of type E2 if and only if 

bo + blx + bzx2 + b3x3 + b4x4 t 0 

for all x, where: 

bo= A C  - BB 

b1 = h [ A ( E e - i O + ~ e e ' e ) + ( C - G ) ( B  e - " + ~ e i f 3 ) - ( B d  e i f3+BD e-"))] 

b2 = C2 + A F  -BE -BE - h2(B e-ie + B  eie)(E e-ie +I? eie) 

- h 2 ( G + D  e-"')(G+D e2i') 

b3= h[F(B e - i e + B  e i e )+ (C-G) (E  e- i f3+E e ie ) - (ED e i e + g D  e-")] 

bq= CF-EE 

for all values of 8 and for all values of h satisfying 0 S h < 1. 
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Proof. Using the notation of the previous proof we consider the vector 
2 U, = b ( x  I ,  + n, - hx eiem, - hx  e-"m,) 

which is time-like for all values of x ,  8 and h satisfying 0 s h < 1. The condition EZ is the 
condition 

E,,E;u'IuV SO. 

Direct substitution yields the theorem. 

The conditions described in these theorems represent very severe restrictions on the 
components of the energy-momentum tensor. They will not be satisfied in general and 
exact solutions will exist which are not of types El or El. In such solutions even the sign 
of the energy density is observer-dependent. Such anomalous situations arise because 
terms describing the local curvature of space-time enter explicitly into the energy- 
momentum tensor. 

It is also worth pointing out that the condition E2 does not in general imply El for a 
Dirac field as it does for a two-component neutrino field. 

4. Ghost solutions 

As well as the anomaly of energy non-definiteness we must also consider the anomaly of 
the existence of ghost solutions. In such solutions the complete energy-momentum 
tensor vanishes although the current vector is non-zero. In flat space-times such 
solutions are trivial: they correspond to the field spinors being constants. However in a 
curved space-time they are non-trivial: they correspond to the situation in which the 
terms describing the local curvature of space-time that appear in the energy-momen- 
tum tensor actually cancel out the terms involving the partial derivatives. 

To obtain ghost solutions we solve the Dirac equation and Einstein's vacuum 
gravitational field equations subject to the condition that all the components of the 
energy-momentum tensor are zero. It is possible to use the freedom in the choice of 
basis spinor to equate the two scalar components $ and 4, and the condition that C and 
G are zero then implies that these are real (4 = $ = &). The components of the Dirac 
equation then become: 

D$ = (m + p  - E ) $  

a* = (7 - P)* 
U =  -(m +P - Y M  

which together with the condition that E," = 0 imply that 

P = P ,  E = c, Y = 7, P = F ,  A =e, 
- 

97 = LY + p - 7, v = -a + p  + ?, K = 2 & - T .  

It is now very difficult to proceed any further in the general case. We have exhausted 
the freedom in the choice of tetrad, but the field equations are not yet in a form that is 
easily integrable. I will therefore merely demonstrate the existence of ghost neutrinos 
by giving a particular example. This has been obtained using Newman-Penrose 
techniques. Detailed calculations are omitted here. 
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It is difficult to integrate the Newman-Penrose equations unless the space-time 
possesses a shear-free congruence of null geodesics in which case it is algebraically 
special. It is therefore convenient to introduce the assumptions that K = 0 and U = 0. It 
is then possible to show that the field equations are inconsistent unless in addition a = 0 
and p = 0. The gravitational field equations in this case yield the simple type D metric 

ds' = ~ ( U U  +bu)-Ii2 du do - ( U U  + bt.)(dx2 +dy2)  

where u and U are two null coordinates and a and b are arbitrary constants. The 
components of the Dirac equation become: 

a/au[Ig II, +i lg(au  + b v ) + + ~ ]  = m(au + b u ) - l i 4  e-x 

a/au[ig + + i ~ g ( a u + b u ) - t ~ ] =  -m(au + b v ) -  e 114 X 

where = *(U, U), and X = X(u,  U )  satisfies the equation 

It is clear that solutions of these equations exist. The latter equation is the integrability 
condition for the previous two. However the meaning of the solution is unclear, except 
that it is the Dirac field whose energy-momentum tensor vanishes in the given 
space-time. 

5. The null-field case 

We now return to the case in which the two field spinors are aligned. In this case the 
current vector is null and the energy-momentum tensor is trace-free. We may align one 
of the basis spinors with the field spinors and put 

* A  = *oA,  

O ~ + R  elSoA. 

dA = doA. 

The basis spinors are now defined up to the transformation 
1 A + R-' e-islA + ToA 

where T is complex. The Dirac equation can now be written in the form 

m = (P - E ) * ,  

64 = (7  - P I $  - 4, 
D4 = (P - €14, 

W = ( 7 - P M - m $ ,  

and the components of the energy-momentum tensor are: 

A = ii[$A& - &A* - 4 A &  + & A 4  + (*& - 4&)(? - y)] 

B = ii[&J;/l- 684 + (+& - &)(a - 2711 

C = G = ti($& - r#&p - p )  

D = ti(+& - 4&)6 
E = - $(\cl$ - +&)I? 

F =  0. 
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The theorems relating to energy conditions can be applied to this case directly. We 
find that 

E=O 
E1 +{  z i o B B a O ,  E 2 3  A C - B B a O  

21CI 2 D Lo 
Thus unless I,@ = 46, a null Dirac field can be of type E2 only if its current vector is 
aligned with a shear-free geodesic null congruence. Clearly energy non-definite 
solutions exist in this case. 

In the trivial case in which + and q5 are equal the energy-momentum tensor 
vanishes. However there also exist ghost solutions for which q5 and 4 are not equal. 

6. Conclusions 

It has been shown that the anomalies associated with neutrino fields in general relativity 
also occur with Dirac fields. Such fields may be energy non-definite and ghost solutions 
may occur. For spin-k particles with non-zero rest-mass, the sign of the energy density is 
generally dependent upon the observer. Thus spin-$ particles do not in general satisfy 
the energy condition that is required for the singularity theorems in general relativity 
(Hawking and Ellis 1973). For weak gravitational fields the anomalies considered here 
may never occur. However in a situation of gravitational collapse it is not reasonable to 
expect Dirac particles to satisfy the usual energy conditions. It would therefore be 
interesting to see if singularity theorems can be proved under weaker assumptions of 
energy density. 
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